Improving Ladle Stir Reliability and Service Life Using new Design Purge Plug

> WANG, FENGGANG LIU, BAIKUAN YU, TERRY

PRCO Refractory Group

The Iron & Steel Technology Conference and Exposition May 3–6, 2010 • David L. Lawrence Convention Center • Pittsburgh, Pa., USA

Association for Iron & Steel Technology • 186 Thorn Hill Road • Warrendale, PA 15086-7528 USA • Phone: (724) 814-3000 ext. 1 • Fax: (724) 814-3001

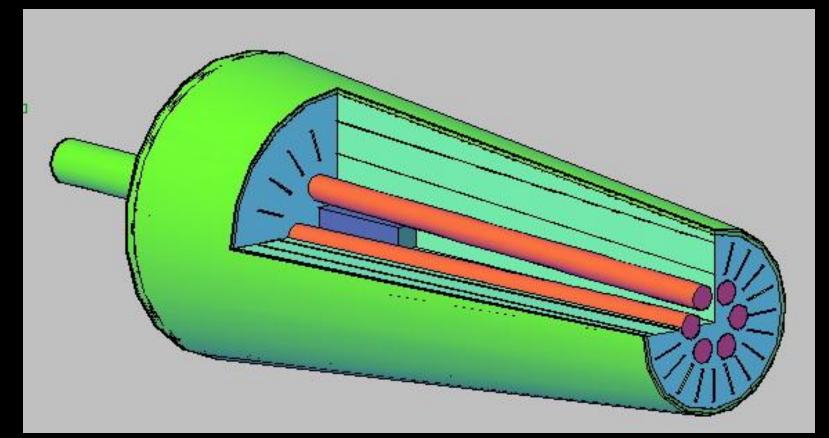
The Evolution of Steel Ladle Stir Plugs

Refractory Materials:

- ✤ Magnesia
- High Alumina
- ✦ Alumina-Magnesia
- ✦ Alumina-Chrome
- Alumina-Spinel

Plug Design:

- Porous
- Interconnected net
- Segmented
- Slotted



Evolving Steel Making Operating Objectives

- Reduced usage of argon injection lance as backup to plug is both a steel quality and a cost concern.
- Improved productivity reduces the window of time available for refining at treatment at the LMF. Operators must be able to complete refining steps, such as desulphurization in quicker time.
- Faster turnaround time is required for ladles.
- Improved service life of ladle refractories, including plugs and ladle slagline, is necessary to meet CPT objectives.

STEEL'S PREMIER TECHNOLOGY EVENT FOR 2010

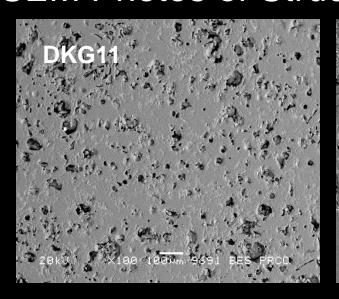
The Iron & Steel Technology Conference and Exposition • May 3-6, 2010 • Pittsburgh, Pa., USA

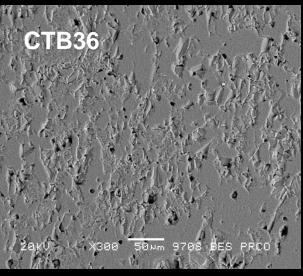
6

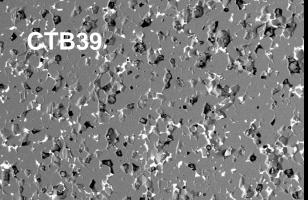
IJ.	Į Γ] [Đ,	7
	9	1	ſ	
	4	IJ	U	

ITC

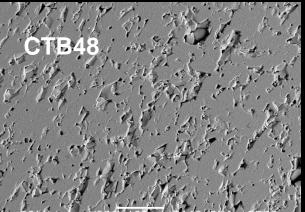
	ZrO2 +HfO2	Al2O3	MgO	CaO	LOI	Sizing
Sintered Alumina	-	99.77	-	0.06	0.14	325
Ceramic Alumina	-	99.25	-	0.08	1.31	325
Ceramic Alumina	-	99.48	-	-	-	6
Tabular Alumina	-	99.56	-	0.09	-	325
Fused Alumina Spinel	-	74.20	-	0.74	-	325
Monoclinic Zirconia	99.09	0.15	-	0.09	-	1000
Zircon	66.01	-	0.26	0.11	-	320
Burned Magnesia	-	0.30	87.93	1.04	8.59	180


The Iron & Steel Technology Conference and Exposition • May 3-6, 2010 • Pittsburgh, Pa., USA


STEEL'S PREMIER TECHNOLOGY EVENT FOR 2010


Chemistry and Physical Properties of Ceramic Rod

	DKG11	CTB36	CTB39	CTB48
AI2O3, %	84.67	93.86	94.48	98.71
ZrO2 + HfO2, %	-	-	4.02	
MgO, %	12.56	5.37	-	0.22
Modulus of Rupture, Mpa	84.9	128.3	116.0	134.5
Bulk Density, g/cm ³	3.06	3.60	3.62	3.71
Apparent Porosity, %	13.1	6.1	0.9	0.6
Reheat Linear Change, % 1600 C x 8h	0.15	0.01	0.02	0.01
Thermal Expansion, % Ambient to 1300 C	1.07	1.00	0.95	1.00



ranakų 🔰 🕺 100 notinių 9729 (BES' PRČO

ASSOCIATION FOR IRON & STEEL TECHNOLOGY The Iron & Steel Technology Conference and Exposition • May 3-6, 2010 • Pittsburgh, Pa., USA

STEEL'S PREMIER TECHNOLOGY EVENT FOR 2010

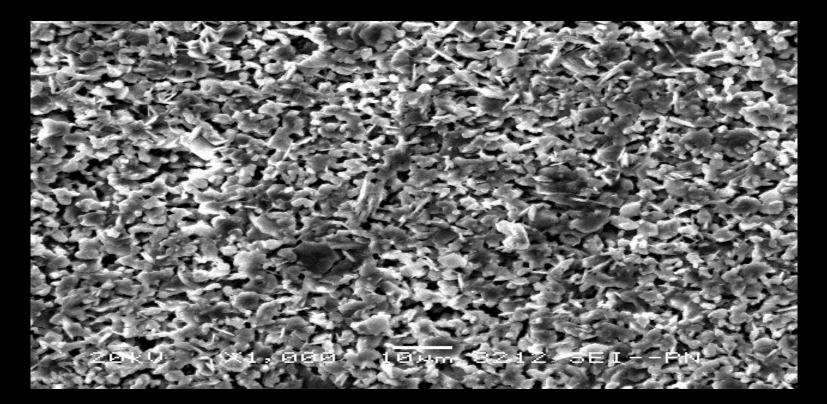
Spinel Castable Raw Materials

	SiO ₂	Al ₂ O ₃	TiO ₂	Fe ₂ O ₃	CaO	MgO	Alkalai
Tabular Alumina	0.03	99.63	0.01	0.03	0.09	0.00	0.21
Alumina Powder	0.03	99.76	0.02	0.02	0.05	0.00	0.09
Alumina Cement	0.29	69.02	0.03	0.12	25.6	0.43	0.38
Spinel	0.23	73.86	0.00	0.21	0.05	25.23	0.22

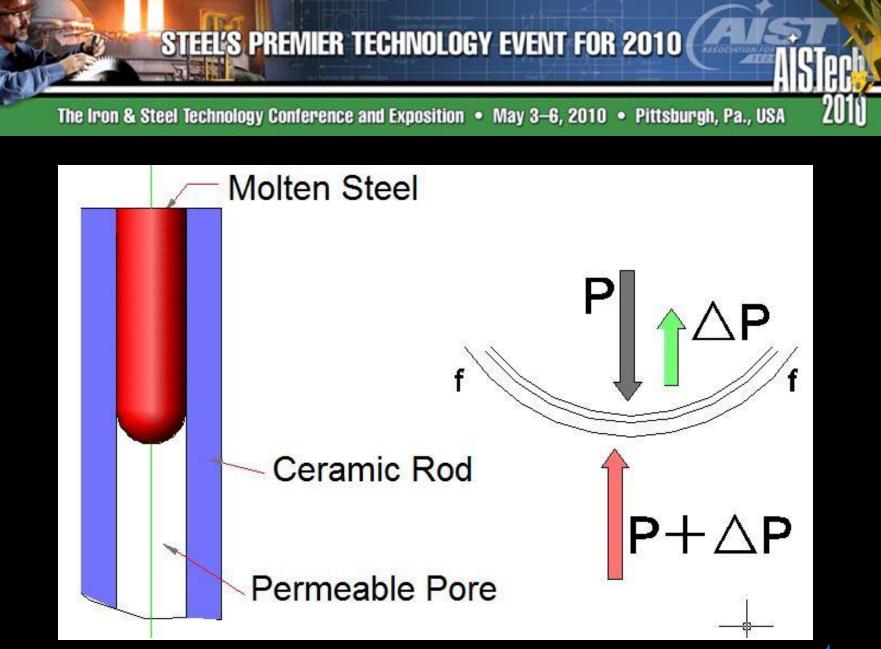
20

The Iron & Steel Technology Conference and Exposition • May 3-6, 2010 • Pittsburgh, Pa., USA

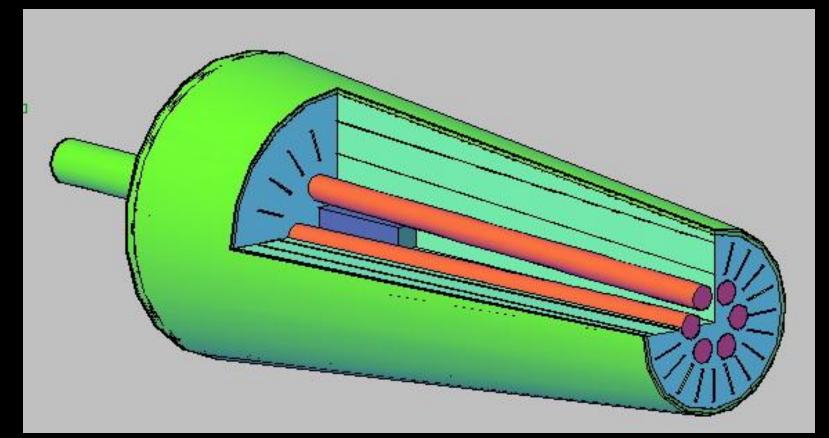
STEEL'S PREMIER TECHNOLOGY EVENT FOR 2010


Spinel Castable Physical Properties

	PROPERTY
110 Cx24h Bulk Density, g/cm3	≥3.10
110 C ×24h Linear Change, %	±0.1
110 C×24h Modulus of Rupture, Mpa	≥6
110 C×24h CCS,Mpa	≥40
1500 Cx3h Bulk Density, g/cm3	≥3.05
1500 C×3h MOR,Mpa	≥20
1500 C×3h CCS,Mpa	≥100
1500 C×1h HMOR,Mpa	≥15



SEM Photo of Spinel Castable



STEEL'S PREMIER TECHNOLOGY EVENT FOR 2010

The Iron & Steel Technology Conference and Exposition • May 3-6, 2010 • Pittsburgh, Pa., USA

CASE HISTORY of PERFORMANCE

	Shop A		Shop B		Shop C		Shop D	
Ladle, MT	180		110		120		100	
Plug design	А	В	А	В	А	В	А	В
Erosion rate, mm/heat	.32	.24	.16	.10	.16	.12	.60	.50
Service Life Improvement	33%		60%		33%		20%	
Depth of metal penetration	20	0	10	0	20	0	20	0

Plug A = Regular Slotted Design

Plug B = New Compound Ceramic Rods with Slot Design

STEEL'S PREMIER TECHNOLOGY EVENT FOR 2010

The Iron & Steel Technology Conference and Exposition • May 3-6, 2010 • Pittsburgh, Pa., USA

CONCLUSIONS

- Newly developed ceramic materials provide higher density and lower porosity versus regular castable for improved resistance to chemical and mechanical erosion.
- The use of permeable ceramic rods reduce the obstruction of the stir plug.
- The need for oxygen washing is reduced.
- Service life is improved.
- More reliable and consistent stirring is achieved..
- The addition of slots provides sufficient volume for rapid desulphurization.
- Bubble size is reduced and quantity of bubbles is increased for improved steel quality.

Thank You!

PRCO America Inc.

